
Woon Ju Song, Ying Ji Sun, Sun Kyung Choi, and Wonwoo Nam[a]

Abstract: We have shown previously that iodosylbenzene–iron(III) porphyrin intermediates (2) are generated in the reactions of oxoiron(IV) porphyrin π-cation radicals (1) and iodosobenzene (PhI), that 1 and 2 are at equilibrium in the presence of PhI, and that the epoxidation of olefins by 2 affords high yields of epoxide products. In the present work, we report detailed mechanistic studies on the nature of the equilibrium between 1 and 2 in the presence of iodoarenes (ArI), the determination of reactive species responsible for olefin epoxidation when two intermediates (i.e., 1 and 2) are present in a reaction solution, and the fast oxygen exchange between 1 and H₂¹⁸O in the presence of ArI. In the first part, we have provided strong evidence that 1 and 2 are indeed at equilibrium and that the equilibrium is controlled by factors such as the electronic nature of iron porphyrins, the electron richness of ArI, and the concentration of ArI. Secondly, we have demonstrated that 1 is the sole active oxidant in olefin epoxidation when 1 and 2 are present concurrently in a reaction solution. Finally, we have shown that the presence of ArI in a reaction solution containing 1 and H₂¹⁸O facilitates the oxygen exchange between the oxo group of 1 and H₂¹⁸O and that the oxygen exchange is markedly influenced by factors such as ArI incubation time, the amounts of ArI and H₂¹⁸O used, and the electronic nature of ArI. The latter results are rationalized by the formation of an undetectable amount of 2 from the reaction of 1 and ArI through equilibrium that leads to a fast oxygen exchange between 2 and H₂¹⁸O.

Keywords: enzyme models · epoxidation · equilibrium · oxygen · reaction mechanisms

Introduction

Heme-containing enzymes such as cytochromes P450, peroxidases, and catalases utilize dioxygen and its partially reduced forms in a variety of enzymatic reactions such as the incorporation of oxygen atoms into organic substrates (cytochrome P450) and the oxidation of hydroperoxides (peroxidase and catalase).[1] A unique feature of the enzymes is to generate oxoiron(IV) porphyrin π-cation radicals, ([Porp]⁺FeIV=O)⁺ (1, Porp = porphyrin), as key intermediates in the catalytic oxidation reactions.[2,3] Extensive mechanistic studies with the enzymes and synthetic iron porphyrins have shown that 1 is generated through heterolytic O–O bond cleavage of iron(III)–hydroperoxide porphyrin intermediates [Eq. (1)].[1–4]

The reverse reaction of the O–O bond cleavage is the O–X bond formation between the oxo group of 1 and halides (X⁻) [Eqs. (2) and (3)]. Among heme-containing enzymes, haloperoxidases catalyze the halogenation of activated C=X bonds, by generating putative [(Porp)FeIII–OX] species through O–X bond formation between 1 and X⁻.[5] In met-
Results and Discussion

Factors affecting the nature of equilibrium between 1 and 2: The electronic effect of iron porphyrin complexes on the reaction of 1 and PhI was investigated with 1 bearing electron-deficient and -rich porphyrin ligands (Supporting Information, Figure S1). As we have shown previously, addition of PhI to the solutions of 1 bearing an electron-rich porphyrin ligand, such as [(TMP)+FeIV=O+] (1c) and [(TMDPP)+FeIV=O+] (1d), did not afford the formation of [(TMDPP)FeIII=O(PhI)+] (2d), respectively [Eq. (6)] (Supporting Information, Figure S2). In line with these results, we have observed the formation of different intermediates in the reactions of iron(III) porphyrin complexes and iodosylbenzene (PhIO), depending on the electronic nature of iron porphyrins. For example, the reactions of [FeIII(TDCPP)]+ and [FeIII(TDFPP)]+ with PhIO afforded 2a and 2b, respectively [Eq. (7)]. In contrast, c and d were formed in the reactions of [FeIII(TMP)]+ and [FeIII(TDMPP)]+ with PhIO [Eq. (8)] (Supporting Information, Figure S3). These results demonstrate that the formation of 2 from 1 and PhI and from iron(III) porphyrins and PhIO is significantly affected by the electronic nature of the iron porphyrins, in which electron-deficient iron porphyrins form 2 favorably, whereas 1 is a preferred intermediate in the case of iron-electron rich porphyrins.

The electronic effect of iodosbenzene on the formation of 2 from 1 and PhI was then investigated with various iodoarenes bearing electron-donating and -withdrawing substituents on the phenyl group of PhI. The conversion of 1 to 2 was not observed in the reactions of 1 bearing an electron-rich porphyrin ligand, irrespective of the electronic nature of ArI (see the columns of 1c and 1d in Table 1), however, the conversion of 1 to 2 was observed depending on the electronic nature of ArI in the reactions of 1 bearing an electron-deficient porphyrin ligand (see the columns of 1a and 1b in Table 1). In the latter cases, ArI containing electron-donating substituents afforded the formation of 2a and 2b (Table 1, entries 1–5), whereas a highly electron-poor ArI such as F\textsubscript{5}C\textsubscript{6}I did not form 2a and 2b (Table 1, entry 10). Interestingly, in the intermediate cases of Cl\textsubscript{2}C\textsubscript{6}H\textsubscript{4}I, F\textsubscript{3}C\textsubscript{6}H\textsubscript{4}I, F\textsubscript{2}C\textsubscript{6}H\textsubscript{3}I, and CF\textsubscript{3}C\textsubscript{6}H\textsubscript{4}I (Table 1, entries 6–9), both 1 and 2 were present concurrently in the reaction solutions. In line with these results, studies of para-substituted ArI revealed that the amounts of 2a and 2b formed in the reactions of 1a and 1b, respectively, increased with the increase of the electron-donating ability of para-substituents on ArI (Supporting Information, Figure S4). These results demonstrate that the electronic nature of ArI is another important factor in generating 2 from the reaction of 1 and ArI; that is, an electron-rich ArI favors the formation of 2, the formation of 2 becomes less favorable as ArI becomes electron-poor, and a highly electron-poor ArI does not afford the formation of 2. In addition, the conversion of 1 to 2 was also affected by the amounts of ArI added to the reaction solutions; the amounts of 2a formed in the reactions of 1a and ArI increased proportionally with the amounts of ArI added (Supporting Information, Figure S5).

As a conclusion, we have provided strong evidence that 1 and 2 are indeed at equilibrium in the presence of ArI (Scheme 1) and that the equilibrium is controlled by factors such as the electronic nature of the iron porphyrins, the electron richness of the iodoarenes, and the concentration of...
On the basis of the results, we have proposed P450 and iron porphyrin models, we decided to determine adducts in oxygen-atom transfer reactions by cytochromes (Scheme 2, pathway B), although we did not exclude the possibility that a small amount of epoxidation (Scheme 2, pathway A). As there is an intriguing, current controversy on the involvement of a second electrophilic oxidant (i.e., oxidant–iron(III)) porphyrin adducts) in oxygen-atom transfer reactions by cytochromes P450 and iron porphyrin models, we decided to determine the structure of active oxidant(s) responsible for oxygen-atom transfer when two different intermediates are present in a reaction solution (Scheme 2).

Because it has been shown previously that competitive oxygenation reactions are a useful mechanistic probe in proposing the nature of reactive species in metal-complex-catalyzed oxygenation reactions, we performed two sets of competitive olefin epoxidation reactions (i.e., cis-stilbene versus trans-stilbene and cyclooctene versus trans-stilbene) with in situ generated intermediates, 1b and 2b. If 2b is involved as an active oxidant in the olefin epoxidation (Scheme 2, pathway B), then product ratios obtained in the competitive epoxidation by 2b will be different from those obtained in the competitive epoxidation by 1b. On the other hand, if 2b is converted to 1b at a fast rate by equilibrium and the olefin epoxidation takes place by 1b (Scheme 2, pathway A), identical product ratios are expected to be observed in the competitive epoxidations performed with the two different intermediates, 1b and 2b. The results in Table 2 show clearly that the product ratios obtained in the competitive epoxidation reactions by 1b and 2b were identical within experimental error margins (Table 2, compare the data in entry 1 to those in entries 2–4). Moreover, the product ratios obtained with 2b prepared with different iodoaromatics (e.g., PhI, 4-CH₃PhI, and 2,4,6-(CH₃)₃PhI) were similar and not affected by the identity of iodoarenes bound to cytochromes (Table 2, entries 2–4). In line with these results, when the competitive epoxidations were carried out with [Fe(III)-TDFPP)]⁺ and iodoarenes (e.g., PhIO, F₂PhIO, and 2,4,6-(CH₃)₃PhIO) under catalytic conditions, the product ratios were identical and not dependent on the kinds of iodoarenes used (Supporting Information, Table S1). On the basis of the results of competitive olefin epoxidations carried out with in situ generated intermediates (1b and 2b) and with different iodoarenes under catalytic conditions, we propose that there is only one epoxidizing intermediate. Although 1b was not detected in the solution of 2b, the active oxidant responsible for the epoxidation of olefins by 2b was 1b, which was generated from 2b by equilibrium (Scheme 2).

Table 1. Intermediates observed in reaction solutions of [(Porp)⁺FeO⁻]⁺ (1) and ArI.[a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>ArI</th>
<th>1a</th>
<th>1b</th>
<th>1c</th>
<th>1d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,4,6-trimethyliodobenzene, (CH₃)₃C₆H₄I</td>
<td>2a</td>
<td>2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2</td>
<td>5-iodo-m-xylene, (CH₃)₃C₆H₄I</td>
<td>2a</td>
<td>2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>3</td>
<td>4-iodoanisole, CH₃OC₆H₄I</td>
<td>2a</td>
<td>2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>4</td>
<td>4-iodotoluene, CH₃C₆H₄I</td>
<td>2a</td>
<td>2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>5</td>
<td>iodobenzene, C₆H₅I</td>
<td>2a</td>
<td>2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>6</td>
<td>1-chloro-4-iodobenzene, ClC₆H₄I</td>
<td>1a+2a</td>
<td>1b+2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>7</td>
<td>1-fluoro-4-iodobenzene, FC₆H₄I</td>
<td>1a+2a</td>
<td>1b+2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>8</td>
<td>1,2-difluoro-4-iodobenzene, FC⁺C₆H₄I</td>
<td>1a+2a</td>
<td>1b+2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>9</td>
<td>4-iodobenzotrifluoride, CF₃C₆H₄I</td>
<td>1a+2a</td>
<td>1b+2b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>10</td>
<td>iodoanisotetrafluoride, F₂C₆H₄I</td>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
</tbody>
</table>

[a] Reactions were followed by monitoring UV/Vis spectral changes of reaction solutions. ArI (30 equiv) was added to the solutions of 1 (1 mm) in a solvent mixture (0.5 mL) of CH₃CN/CH₂Cl₂ (3:1) at –40°C. See Experimental Section for detailed reaction conditions.

Scheme 1. The possible olefin epoxidation routes (A and B) when two different intermediates are present in a reaction solution.
Oxygen exchange between 1 and H$_2^{18}$O in the presence of ArI: In this section, we report that the presence of ArI in a reaction solution containing 1 and H$_2^{18}$O facilitates the oxygen exchange between the oxo group of 1 and H$_2^{18}$O. This phenomenon is rationalized with the generation of 2 from 1 and ArI through equilibrium, followed by a fast oxygen exchange between 2 and H$_2^{18}$O.[9]

Addition of PhI to a reaction solution of 1c, prepared by treating [Fe(TMP)(CF$_3$SO$_3$)] with m-chloroperbenzoic acid (m-CPBA) in the presence of a small amount of H$_2^{18}$O (3 µL), did not show any spectral changes, indicating that 2c was not generated in the reaction of 1c and PhI (see above). Upon addition of cyclohexene to the resulting solution, 1c reverted back to the starting [Fe(TMP)]$^+$ complex, and product analysis of the reaction mixture revealed that cyclohexene oxide was yielded as a major product (60% yield based on the amount of 1c). Interestingly, we found that most of the oxygen in the epoxide product was derived from H$_2^{18}$O (Scheme 3, pathway A). For comparison, when we prepared 1c in the presence of the same amount of H$_2^{18}$O (3 µL) but without adding PhI, the epoxidation of cyclohexene by 1c yielded cyclohexene oxide containing a relatively small amount of oxygen derived from H$_2^{18}$O (Scheme 3, pathway B). These results imply that although 1c was the sole species detected in the reaction solution of 1c and PhI, another species that exchanges its oxygen with labeled water must be generated in the reaction solution. As we have shown above that 1 and 2 are at equilibrium in the presence of PhI and it has been reported previously that 2 exchanges its oxygen atom with labeled water at a fast rate,[9] such a high 18O incorporation from H$_2^{18}$O into the epoxide product implies that an undetectable amount of 2 was generated in the solution of 1 and PhI through equilibrium and that a fast oxygen exchange occurred between 2 and H$_2^{18}$O. We therefore propose a mechanism illustrating the phenomenon of a high 18O incorporation from H$_2^{18}$O into the epoxide product as follows: First, $[^{18}$O]2c is generated from [1c]I and ArI by equilibrium followed by a fast oxygen exchange between $[^{18}$O]2c and H$_2^{18}$O, resulting in the generation of $[^{18}$O]2c (Scheme 4, pathways A and B).

![Scheme 3. The effect of PhI on the 18O incorporation into the epoxide product.](image)

![Scheme 4. The proposed mechanism illustrating the phenomenon of a high 18O incorporation from H$_2^{18}$O into the epoxide product.](image)

Then, [1c]I is generated from $[^{18}$O]2c by equilibrium (Scheme 4, pathway D), and the epoxidation of cyclohexene by [1c]I produces cyclohexene $[^{18}$O]oxide. In order to prove this working hypothesis, we carried out isotopically labeled water experiments by changing reaction conditions such as PhI incubation time, the amounts of PhI and H$_2^{18}$O in reaction solutions, and the electronic nature of iodoarenes, with an assumption that these variations will influence the degree of oxygen exchange between 1c and H$_2^{18}$O if the oxygen exchange occurs by the proposed mechanism.

We first examined the effect of PhI incubation time on the degree of 18O incorporation from H$_2^{18}$O into the epoxide product in the epoxidation of cyclohexene by 1c. A schematic diagram illustrating reaction conditions is depicted in Scheme 5A (see the blue rectangles for the change of PhI.
incubation time). The results in Figure 1a show that the amounts of \(^{18}\text{O}\) found in cyclohexene oxide increased proportionally with the PhI incubation time. This phenomenon is explained by considering that through increasing the PhI incubation time, more \([^{16}\text{O}]\text{I}\) is converted to \([^{18}\text{O}]\text{I}\), which exchanges its oxygen atom with \(\text{H}_{2}^{18}\text{O}\) to give \([^{18}\text{O}]\text{I}\). This results in the generation of \([^{18}\text{O}]\text{I}\) through equilibrium, and the epoxidation of cyclohexene by \([^{18}\text{O}]\text{I}\) yields cyclohexene oxide containing \(^{18}\text{O}\) (Scheme 4). For comparison, when the isotopically labeled water experiment was carried out with \(\text{I}\) in the absence of PhI, the amounts of \(^{18}\text{O}\) incorporated into the epoxide product were small and did not change significantly depending on the increase of the PhI incubation time in the presence of \(\text{H}_{2}^{18}\text{O}\) only (Figure 1a, blue dotted line),\(^{19}\) demonstrating that the increase of \(^{18}\text{O}\) incorporation upon increasing the PhI incubation time results from the direct oxygen exchange between \(\text{I}\) and \(\text{H}_{2}^{18}\text{O}\).

Secondly, we have investigated the effects of the amounts of PhI and \(\text{H}_{2}^{18}\text{O}\) on the \(^{18}\text{O}\) incorporation from \(\text{H}_{2}^{18}\text{O}\) into cyclohexene oxide, by carrying out cyclohexene epoxidation using \(\text{I}\) with different amounts of PhI and \(\text{H}_{2}^{18}\text{O}\) (see blue rectangles in Scheme 5B and C). Figure 1b and c show that the amounts of \(^{18}\text{O}\) incorporated into cyclohexene oxide increased proportionally with the PhI and \(\text{H}_{2}^{18}\text{O}\) amounts added to the reaction solutions. The increase of \(^{18}\text{O}\) incorporation with the increase of PhI amount is rationalized with the shift of equilibrium toward the formation of \([^{18}\text{O}]\text{I}\) from \([^{16}\text{O}]\text{I}\) and PhI (Scheme 4, pathway A), resulting in a fast formation of \([^{18}\text{O}]\text{I}\) that leads to a high \(^{18}\text{O}\) incorporation into the epoxide product. The fast increase of \(^{18}\text{O}\) incorporation upon increasing the \(\text{H}_{2}^{18}\text{O}\) amounts in reaction solutions results from a fast oxygen exchange between \([^{18}\text{O}]\text{I}\) and \(\text{H}_{2}^{18}\text{O}\) (Scheme 4, pathway B).

Finally, the electronic effect of iodoarenes was investigated with electron-rich and -deficient iodoarenes (see Scheme 5D for experimental conditions). As the results in Figure 1d show, the \(^{18}\text{O}\) incorporation from \(\text{H}_{2}^{18}\text{O}\) into cyclohexene oxide increased proportionally with ArI incubation time except in the case of \(\text{F}_{5}\text{Cl}\text{I}\). In addition, the rates of \(^{18}\text{O}\) incorporation were different depending on the electronic nature of iodoarenes, in which the \(^{18}\text{O}\) incorporation increases at a fast rate as ArI becomes electron-rich. Such an electronic effect of iodoarenes on the \(^{18}\text{O}\) incorporation results from the shift of equilibrium position depending on the electron richness of ArI.

As we have discussed in Scheme 1B, the equilibrium position shifts toward the formation of \([^{18}\text{O}]\text{ArI}\) in the case of an electron-rich ArI (Scheme 4, pathway A), resulting in a fast oxygen exchange between \([^{18}\text{O}]\text{ArI}\) and \(\text{H}_{2}^{18}\text{O}\). As ArI becomes electron-poor, the formation of \([^{18}\text{O}]\text{ArI}\) from \([^{16}\text{O}]\text{ArI}\) and ArI becomes less favorable (Scheme 4, pathway A). In the case of a highly electron-poor ArI such as \(\text{F}_{5}\text{Cl}\text{I}\), the reaction of \([^{18}\text{O}]\text{ArI}\) and ArI does not form \([^{18}\text{O}]\text{ArI}\).

In summary, we have shown that the oxygen exchange between \(\text{I}\) and \(\text{H}_{2}^{18}\text{O}\) is facilitated by the presence of ArI and the oxygen exchange is markedly influenced by factors such as ArI incubation time, the amounts of ArI and \(\text{H}_{2}^{18}\text{O}\), and the electron richness of ArI. These results are rationalized with the generation of an undetectable amount of \(2\) from the reaction of \(\text{I}\) and ArI through equilibrium and the occurrence of a fast oxygen exchange between \(2\) and \(\text{H}_{2}^{18}\text{O}\). Moreover, all the results of isotope-labeling studies support the existence of equilibrium between \(\text{I}\) and \(2\) in the presence of ArI.\(^{20}\)

Conclusion

Although the reactions of iron(III) complexes with iodosylarenes have been extensively studied over the past three decades to elucidate the chemistry of \(\text{I}\), the so-called Compound I in heme-containing enzymes,\(^{2,12,21}\) the reverse reaction, which is the O–I bond formation between \(\text{I}\) and ArI, has been unveiled very recently.\(^{21}\) In the present work, we have thoroughly investigated mechanistic details on the formation of \(2\) in the reactions of \(\text{I}\) and ArI and demonstrated unambiguously that two different intermediates, \(\text{I}\) and \(2\), can be present concurrently in a reaction solution through equilibrium and that the nature of equilibrium can be con-

Scheme 5. The experimental conditions for the reactions of PhI incubation time, PhI amount, \(\text{H}_{2}^{18}\text{O}\) amount, and the electronic nature of iodoarenes to find the degree of \(^{18}\text{O}\) incorporation from \(\text{H}_{2}^{18}\text{O}\) into cyclohexene oxide by \(\text{I}\).
trolled by factors such as the electronic nature of iron porphyrins, the electron richness of ArI, and the concentration of ArI. Further evidence supporting the existence of equilibrium between 1 and 2 in the presence of ArI has been obtained by carrying out isotope-labeling experiments, in which the oxygen exchange between 1 and H$_2^{18}$O is facilitated by the presence of ArI, and this phenomenon is rationalized with the formation of 2 from the reaction of 1 and ArI through equilibrium. We have also shown that the oxygen exchange is markedly affected by factors such as ArI incubation time, the amounts of ArI and H$_2^{18}$O, and the electronic nature of ArI. Finally, by carrying out competitive olefin epoxidations with in situ generated 1 and 2, we have concluded that 1 is the sole active oxidant that effects olefin epoxidation when 1 and 2 are present concurrently in a reaction solution by equilibrium. Future studies will be focused on searching for a possibility that hydroperoxide–iron(III) porphyrin complexes, ([Porp]FeIV–O–O), are formed by O–O bond formation between oxoiron(IV) porphyrin π-cation radicals and hydroxides (RO $^-$).

Experimental Section

Materials: Dichloromethane (anhydrous) and acetonitrile (anhydrous) were obtained from Aldrich Chemical Co. and purified by distillation over CaH$_2$ prior to use. All reagents purchased from Aldrich were the best available purity and used without further purification unless otherwise indicated. m-CPBA was purified by washing with phosphate buffer (pH 7.4) followed by water and was then dried under reduced pressure. Iodosylarenes were prepared by following a method in the literature. The purities of the oxidants were determined by using iodometric titration.

H$_2^{18}$O (95 % 18O enriched) was purchased from ICON Services Inc. (Summit, NJ, USA). [Fe(TMP)Cl], [Fe(TDCPP)Cl], and [Fe(TDFPP)Cl] were obtained from Mid-Century Chemicals (Posen, IL, USA). [Fe(TMP)Cl], [Fe(TDCPP)Cl], and [Fe(TDFPP)Cl] were synthesized by following a literature method.

$	ext{[Porp]}$Fe(CF$_3SO_3$)$_2$ was prepared by stirring equimolar amounts of [$	ext{Porp}$]FeCl$_2$ and [Ag(CF$_3$SO$_3$)$_2$] followed by filtering through a 0.45 µm filter. The resulting solution was used immediately for further studies.

Instrumentation: UV/Vis spectra were recorded on a Hewlett-Packard 8453 spectrophotometer equipped with an Optistat DN variable-temperature liquid-nitrogen cryostat (Oxford Instruments). Product analyses for the epoxidation of cis- and trans-stilbenes were performed by HPLC analysis using a Dionex Summit P580 equipped with a variable-wavelength UV-200 detector. Products were separated on a Waters Symmetry C18 reverse-phase column (4.6 × 6 X 84.53 mm), eluted first with 50 % methanol/water for 10 min and then with 85 % methanol/water for 15 min at a flow rate of 1 mL min$^{-1}$. Detection was made at λ = 215 and 254 nm.

Product analyses for the epoxidation of cyclohexene and cyclooctene were performed on a Hewlett-Packard 5890 II Plus gas chromatograph equipped with a flame ionization detector and a Hewlett-Packard 5890 II Plus gas chromatograph interfaced with a Hewlett-Packard–model 5989B mass spectrometer.

Reactions of 1 with ArI: Compound 1 was prepared by adding m-CPBA (1.5 equiv, 1.5 mL, diluted in CH$_3$CN (50 µL)) into a 0.1 cm UV cuvette containing a reaction solution of a triflate iron(III) porphyrin complex (1 µmol) in a solvent mixture of CH$_3$CN/CH$_2$Cl$_2$ (3:1, 0.5 mL) at −40°C. Then, appropriate amounts of iodosoarenes (diluted in CH$_3$CN (50 µL)) were added into the UV cuvette, and spectral changes of 1 were monitored by using a UV/Vis spectrophotometer.

Competitive olefin epoxidations: All reactions were run at least three times and the data reported are the average of these reactions. The com-

Figure 1. Plots showing the effects of a) PhI incubation time (red solid line; blue dotted line for the absence of PhI), b) PhI amount, c) H$_2^{18}$O amount, and d) the electronic nature of ArI and ArI incubation time on the degree of 18O incorporation from H$_2^{18}$O into cyclohexene oxide in the epoxidation of cyclohexene by 1c: CH$_2$C$_6$H$_4$I (●), C$_6$H$_5$I (○), FC$_3$H$_4$I (▲), F,C$_6$H$_4$I (◆), F,C$_5$I (▲). See the Experimental Section for detailed reaction procedures. All reactions were followed by monitoring UV/Vis spectral changes of reaction solutions. Cyclohexene oxide was produced with high yields in all of the reactions (>60 % based on the intermediate 1c formed). The product yields were calculated with an assumption that the intermediate 1c was formed quantitatively in the reactions of [Fe(TMP)(CF$_3$SO$_3$)$_2$] (2 m) and m-CPBA (1.5 equiv).
petitive oxidations of cis- and trans-stilbenes and of cyclooctene and trans-stilbene were carried out as follows: 1b was prepared by reacting [Fe(TDPPP)(CF$_3$SO$_3$)] (2 m) with m-CPBA (1.5 equiv, 3 mM) in a solvent mixture of CH$_2$CN/CH$_2$Cl$_2$ (3:1, 1 mL) at -40°C. 2b was prepared by adding ArI (30 equiv, 60 mM, diluted in CH$_2$CN (50 μL)) to the reaction solution of 1b at -40°C. Then, olefins (equal amounts of competing olefins, 40 mM each, diluted in CH$_2$Cl$_2$ (0.2 mL)) were added to the reaction solutions. After the intermediates reverted back to the starting [Fe(TDPPP)]$^+$ complex, the reaction solutions were directly analyzed by HPLC or GC/GC-MS. Product yields were determined by comparison against standard curves prepared with known authentic samples.

Isotopic-labeling studies: All reactions were run at least three times and the data reported are the average of these reactions and calculated on the basis of the 18O enrichment of H$_2$O (95% 18O enriched). Scheme 5 shows experimental conditions for the reactions of PhI incubation time (Scheme 5A), PhI amount (Scheme 5B), H$_2$O$_2$ amount (Scheme 5C), and the electronic nature of iodoarenes (Scheme 5D). In general, 1c was prepared by treating [Fe(TMP)(CF$_3$SO$_3$)] (2 m) in the presence of H$_2$O$_2$ (5 μL) in a solvent mixture of CH$_2$CN/CH$_2$Cl$_2$ (3:1, 0.5 mL) at -40°C. After ArI (30 equiv, 60 mM, diluted in CH$_2$CN (50 μL)) was added to the solution of 1c, cyclohexene (0.2 mmol, diluted in CH$_2$Cl$_2$ (50 μL)) was added to the reaction mixture. After 1c reverted back to the starting [Fe(TMP)]$^+$ complex, the resulting solution was directly analyzed by using GC and GC-MS. Product yields were determined by comparison against standard curves prepared with cyclohexene oxide and decane as an internal standard. The 18O and 16O compositions in cyclohexene oxide were determined by the relative abundances of the mass peaks at m/z 85 and 97 for 18O and m/z 85 and 99 for 16O.

Acknowledgements

This research was supported by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program. We are grateful to Professor Lawrence Que, Jr. at the University of Minnesota for insightful discussions. We also thank the Korea Science and Engineering Foundation (KOSEF) and the National Science Foundation (NSF) for stimulating this international cooperative research effort.

[4] Abbreviations used: TDCPP, meso-tetrakis(2,6-dichlorophenyl)porphyrin dianion; TDFPP, meso-tetrakis(2,6-difluorophenyl)porphyrin dianion; TMP, meso-tetramethylporphyrin dianion; TDDMP, meso-tetrazasilaporphyrin dianion.

[6] The reactions of I with other halobenzenes such as bromo-, chloro-, and fluoro benzenes did not show formation of 2, indicating again that the O–X bond formation between PhX and the oxo group of I depends on the electron richness of the halogen group.

[7] We have observed the formation of different intermediates in the reactions of electron-deficient iron(III) porphyrins and ArI0, depending on the electronic nature of iodosylaranes. For example, the reaction of [Fe$^{3+}$(TCDCPP)]$^+$ with PhI0 or (CH$_3$)$_2$PhI0 affords 2a, whereas 2a is formed in the reaction of [Fe$^{3+}$(TDCPP)]$^+$ with PhI0.

[12] We have proposed very recently that o xoiron(iv) porphyrin p–cation radicals are the sole active oxidant that is involved in the catalytic olefin epoxidation and alkane hydroxylation by iron porphyrin complexes: W. Song, Y. O. Ryu, R. Song, W. Nam, J. Biol. Chem. 2005, 10, 294–304.

[14] The observation that the oxygen exchange stops after 10% 18O incorporation from H$_2$O into the cyclohexene oxide product may be due to the blocking of the axial position τ to the iron-oxo moiety by m-chlorobenzoate. See the “oxo-hydroxo tautomerism” proposed for the oxygen exchange between high-valent metal-oxo porphyrins and labeled water: J. Bernadou, B. Meunier, Chem. Commun. 1998, 2167–2173.

[15] We review noted that because the present results were obtained with in situ generated o xoiron(iv) porphyrin p–cation radicals, the mechanism of oxygen exchange in olefin epoxidation under catalytic conditions may be different from the mechanism proposed in this study.

Received: February 4, 2005
Revised: July 30, 2005
Published online: October 25, 2005