Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer

Shunichi Fukuzumi1,2*, Yuma Morimoto1, Hiroaki Kotani1, Panče Naumov1, Yong-Min Lee2,3 and Wonwoo Nam2,3*

Critical biological electron-transfer processes involving high-valent oxometal chemistry occur widely, for example in haem proteins [oxoiron(IV); FeIV(O)] and in photosystem II. Photosystem II involves Ca2+ as well as high-valent oxomanganese cluster species. However, there is no example of an interaction between metal ions and oxoiron(IV) complexes. Here, we report new findings concerning the binding of the redox-inactive metal ions Ca2+ and Sc3+ to a non-haem oxoiron(IV) complex, [(TMC)FeIV(O)]2+. (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). As determined by X-ray diffraction analysis, an oxo-Sc3+ interaction leads to a structural distortion of the oxoiron(IV) moiety. More importantly, this interaction facilitates a two-electron reduction by ferrocene, whereas only a one-electron reduction process occurs without the metal ions. This control of redox behaviour provides valuable mechanistic insights into oxometal redox chemistry, and suggests a possible key role that an auxiliary Lewis acid metal ion could play in nature, as in photosystem II.

Metal ions play pivotal roles in biological electron-transfer (ET) systems such as photosynthesis and respiration1–4. Oxoiron(IV) interactions occur widely in enzymes, facilitating oxidative processes using molecular oxygen or hydrogen peroxide1–3. Another very important example is the oxygen-evolving complex (OEC) of photosystem II (PS II), in which Ca2+ acts as an essential cofactor in the manganese–calcium (Mn4Ca) active site responsible for Earth’s molecular oxygen, via oxygen evolution in photosynthesis4–11. Although high-valent oxomanganese(IV) species are considered to be reactive intermediates in O–O bond formation by means of the OEC of PS II, the exact functional role of Ca2+ remains unclear4–11. In biomimetic studies, a number of high-valent oxometal intermediates have been synthesized as chemical models of the reactive intermediates that are involved in biological redox reactions12–16. However, the possible control of oxo-transfer or redox chemistry of high-valent oxometal intermediates by the binding of redox-inactive metal ions appears not to be known or even to have been considered. On the other hand, redox-inactive metal ions such as Ca2+ have been established to control the redox reactivity of organic electron acceptors by binding to the one-electron reduced species involved, that is, radical anions of electron acceptors17–19.

Here, we report the first example of binding of metal ions such as Sc3+ and Ca2+ to a non-haem oxoiron(IV) complex, [(TMC)FeIV(O)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)39; the crystal structure of Sc3+-bound [(TMC)FeIV(O)]2+ was determined by X-ray crystallography. The binding of Sc3+ to [(TMC)FeIV(O)]2+ results in a change in the number of electrons transferred from ferrocene (Fc) to the oxoiron complex; two-electron reduction of [(TMC)FeIV(O)]2+ by Fc occurs with Sc3+ binding, but only single-electron reduction of [(TMC)FeIV(O)]2+ by Fc occurs in the absence of Sc3+ (ref. 21). Such a change in the number of electrons by binding of a metal ion to high-valent oxometal species provides valuable insight into the role of metal ions at the active site of the OEC.

Results and discussion

We have shown recently that ET from one-electron reductants, such as Fc and its derivatives, to [(TMC)FeIV(O)]2+ occurs in acetonitrile

![Figure 1](image_url) Sc3+ effect on the ET reaction of [(TMC)FeIV(O)]2+. Spectral changes observed in ET from Fc (5.0 mM) to [(TMC)FeIV(O)]2+ (0.10 mM) in the presence of various concentrations of Sc3+ (0 mM, blue line; 0.02–0.08 mM, grey lines; 0.2 mM, red line) in MeCN. Inset: titration curve showing a stoichiometry of [Fc+] with respect to [Sc3+].
The rate of formation of Fc$^+$ in the presence of Sc$^{3+}$ obeys pseudo-first-order kinetics, and the pseudo-first-order rate constant (k_{ob}) increases linearly with increasing concentration of Fc (see Supplementary Fig. S1). The ET rate constant (k_{et}) was determined from the slope of the linear plot. The pseudo-first-order kinetics for the two-electron reduction of [(TMC)Fe(O)$]^{2+}$ by Fc in the presence of Sc$^{3+}$ indicates that the first ET from Fc to [TMCFe(O)$]^{2+}$ is the rate-determining step, followed by the rapid second ET from Fc to the [TMCFe(O)$]^{2+}$/Sc$^{3+}$ complex to produce one additional equivalent of Fc$^+$ and [TMCFe(O)/Sc$^{3+}$. We also found that the k_{et} value in the presence of Sc$^{3+}$ is smaller than the value in the absence of Sc$^{3+}$, remaining constant at Sc$^{3+}$ concentrations higher than one equivalent (Fig. 3a). This may result from the larger reorganization energy of ET associated with binding of Sc$^{3+}$ to [TMCFe(O)$]^{2+}$. This conclusion is confirmed by measurements of the temperature dependence of k_{et} in the absence and presence of Sc$^{3+}$, which correspond to activation enthalpies of 57 and 71 kJ mol$^{-1}$, respectively (Fig. 3b).

A question to be answered here is why the two-electron reduction of [(TMC)Fe(O)$]^{2+}$ with Fc is made possible by the presence of redox-inactive metal ions. If the Fe0(O) complex is reduced to the Fe0(O) complex, the binding of Sc$^{3+}$ to the oxo group is expected to become stronger due to increased electron density on the oxo group. This would facilitate further reduction to an Fe0 complex, accompanied by removal of the oxo group with protons as water (Fig. 1).

We have shown the 1:1 stoichiometry of Sc$^{3+}$ to [TMCFe(O)$]^{2+}$ in the two-electron reduction of [TMCFe(O)$]^{2+}$ by Fc in the presence of Sc$^{3+}$ (Figs 1 and 3a) and there is no change in the k_{et} value with increasing Sc$^{3+}$ concentration. Definitive proof for Sc$^{3+}$ binding to the oxo group of [TMCFe(O)$]^{2+}$ was obtained from X-ray crystallography. Single crystals of [TMCFe(O)–Sc(OH)$_4$] were grown from a MeCN/diethyl ether mixture at 15°C. The X-ray crystal structure in Fig. 4 clearly shows the binding of Sc$^{3+}$ to the oxo moiety of [TMCFe(O)$]^{2+}$ (see Supplementary Information for crystallographic data and refinement details (Supplementary Tables S1–S4) and also Supplementary Fig. S2 for the asymmetric unit of the complex). To the best of our knowledge, this is the first high-valent oxometal species binding a metal ion at the oxometal moiety. The strong binding of Sc$^{3+}$ to the oxo group results in elongation of the Fe–O distance of the Fe0(O)–Sc$^{3+}$ complex.
(1.754(3) Å), and the Fe–O distances of \([\text{[TMC]}\text{Fe}^\text{IV}(\text{NMe})]\)²⁺, \([\text{[TMC]}\text{Fe}^\text{IV}(\text{O})]\)²⁺ (TMC = 1-mercaptoethyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) and \([\text{[TMC-py]}\text{Fe}^\text{IV}(\text{O})]\)²⁺ (TMC-py = 1,2-pyrindylmethyl)-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) were reported to be 1.643(3) Å by X-ray crystallography, respectively.20,24,25. Here, the Sc³⁺–O (oxo) bond length within the Fe³⁺–Sc³⁺ moiety is 1.933(3) Å, which is significantly shorter than the Sc³⁺–OH (hydroxo) distance (2.188(3) Å), a clear indication of stronger binding of Sc³⁺ to the oxo group when compared to the hydroxo group. The Fe–N bonds in the Fe³⁺–Sc³⁺ complex range from 2.132(3) to 2.210(4) Å and average 2.175 Å, which is longer than the average value (2.095 Å) of the Fe–N complex without Sc³⁺.

By removal of the coordinated MeCN from octahedral six-coordinate \([\text{[TMC]}\text{Fe}^\text{IV}(\text{O})(\text{NMe})]\)²⁺ (Fig. 5a)²⁰ via Sc³⁺ coordination, the iron atom in the Fe³⁺–Sc³⁺ complex adopts a distorted square pyramidal five-coordinated geometry (Fig. 5b). All four N-methyl groups of the TMC ligand in the Fe³⁺–Sc³⁺ complex point to the same side of the oxo moiety (Fig. 4b), whereas those in the Fe³⁺–O complex without Sc³⁺ point away from the oxo ligand, below the plane defined by the four nitrogens of the TMC ligand and anti to the oxo atom²⁰. Such switching of the four N-methyl groups in the binding site of the oxo group from anti to syn has been recently suggested to occur by treatment of \([\text{[TMC]}\text{Fe}^\text{IV}(\text{O})(\text{NMe})]\)²⁺ with PhIO in the presence of tetrafluoroborate anion, although the X-ray crystal structure has yet to be determined²⁰. In the syn structure there is enough space to accommodate the Sc³⁺ complex bound to the oxo moiety, whereas there is no space for the axial binding of MeCN in the trans position to the iron-oxo moiety. The mechanism of the structural change from anti to syn accompanied by binding of Sc³⁺ and removal of the coordinated MeCN has yet to be clarified.

In conclusion, we have isolated and determined the crystal structure of the Fe³⁺–Sc³⁺ complex. The strong binding of Sc³⁺ to the oxo group results in significant structural change from an octahedrally hexacoordinated metal centre to a pentacoordinated one with square pyramidal coordination, with concomitant switching of the four N-methyl groups of the TMC ligand at the binding site of the oxo group from anti to syn disposition. A dramatic effect on redox properties occurs, in which the number of electrons transferred from Fe to the Fe³⁺–O complex is also changed from one to two, depending on the binding of Sc³⁺ or Ca²⁺ to the oxo group. These findings suggest a likely role for a redox-inactive metal ion as a necessary or useful component in chemical or natural systems, for the modulation of redox potential and ET properties of high-valent oxometal species. This could be considered in discussions of the unknown role of the Ca²⁺ ion found in the vicinity of the active site of OEC, that is, its facilitation of the two-electron reduction of a Mn³⁺–O group by water/hydroxide.

Methods
See experimental section in Supplementary Information for detailed experimental conditions and procedures, spectroscopic and kinetics analyses, and crystal data.

Received 30 December 2009; accepted 24 May 2010; published online 11 July 2010

References

Acknowledgements
This work was supported by a Grant-in-Aid (no. 20108010 to S.F.) and a Global COE program, ‘the Global Education and Research Center for Bio-Environmental Chemistry’ from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to S.F.), and NRF/MEST through a WCU project (R31-2008-000-10010-0) (to S.F. and W.N.) and the Creative Research Initiatives Program (to W.N.). Crystallographic data for [(TMC)Fe(ν)(O)–Sc(OTf) 4 (OH)] have been deposited with the Cambridge Crystallographic Data Center under reference numbers CCDC-742067 (X-ray).

Author contributions
S.F., Y.M., H.K. and W.N. conceived and designed the experiments. Y.M. and P.N. performed the experiments. Y.M., H.K. and P.N. analysed the data. P.N. and Y.M.L. contributed materials and analysis tools. S.F. and W.N. co-wrote the paper.

Additional information
The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturechemistry. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to S.F. and W.N.