Synthesis, Characterization, and Reactivity of Cobalt(III)–Oxygen Complexes Bearing a Macrocyclic N-Tetramethylated Cyclam Ligand

Doyeon Kim,[a] Jaeheung Cho,[a, b] Yong-Min Lee,[a] Ritimukta Sarangi,[c] and Wonwoo Nam*[a]

Abstract: Mononuclear metal–dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side-on cobalt(III)–peroxo complex bearing a macrocyclic N-tetramethylated cyclam (TMC) ligand, [Co(15-TMC)(O2)]^+, was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)–peroxo complex was cleanly converted into an end-on cobalt(III)–hydroperoxo complex, [Co(15-TMC)(OOH)]^+. The cobalt(III)–hydroperoxo complex was further converted to [Co(15-TMC-CH2-O)]^{2+} by hydroxylation of a methyl group of the 15-TMC ligand.

Kinetic studies and ^18O-labeling experiments proposed that the aliphatic hydroxylation occurred via a CoIV–oxo (or CoIII–oxyl) species, which was formed by O=O bond homolysis of the cobalt(III)–hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.

Introduction

Oxygen-coordinating metal species, such as metal–peroxo, –hydroperoxo, and –oxo complexes (Scheme 1), have been frequently invoked as reactive intermediates in the catalytic cycles of dioxygen activation by metalloenzymes, such as heme and nonheme iron monooxygenases and copper-containing enzymes.[1] In biomimetic studies, synthetic analogues of these active oxygen intermediates have been intensively investigated to understand their structures, mechanisms of interconversion, and the factors that control their chemical reactivities in oxidation reactions.[2] In those studies, it has been shown that supporting ligands play an important role in tuning the geometric and electronic structures, stabilities, and reactivities of the oxygen-coordinating metal complexes. One notable example of the supporting ligands is N-tetramethylated cyclam (TMC) and its derivatives,[3] which have proved to be versatile ligands in the biomimetic chemistry of dioxygen activation by metal complexes (see Scheme 2 for the ligand structures of n-TMC).[4] A variety of metal–TMC complexes with oxo, superoxo, peroxo, and hydroperoxo ligands have been synthesized and spectroscopically and/or structurally characterized.[5–10] In particular, the first high-resolution crystal structures of mononuclear nonheme iron(IV)–oxo and iron(III)–peroxo complexes, such as [FeIV(14-TMC)(O)]^{2+} and [FeIII(14-TMC)(O2)]^+, were successfully obtained by using the 14-TMC macrocyclic ligand.[7a,10a] It was also shown that the iron(III)–peroxo complex [FeIII(14-TMC)(O2)]^+ was cleanly converted to the corresponding iron(III)–hydroperoxo complex, [FeIII(14-TMC)(OOH)]^+, upon protonation; this was followed by

Scheme 2. A schematic drawing of n-TMC ligands.[4]
clean conversion of the iron(III)-hydroperoxo complex to an iron(IV)-oxo complex, [FeIV(14-TMC)(O)2]2+ through homolytic O–O bond cleavage.[7a] As part of our ongoing efforts to elucidate the chemistry of metal–O2 complexes, we synthesized a novel cobalt(II) complex bearing a 15-TMC ligand, [CoII(15-TMC)]2+ (1; see the structure of the 15-TMC ligand in Scheme 2) and used it for the synthesis of cobalt(III)-peroxo and –hydroperoxo complexes ([CoIII(15-TMC)(O2)]+ (2) and [CoIII(15-TMC)(OOH)]2+ (3)).[8] We also show that the cobalt(III)-hydroperoxo complex (3) is cleanly converted to [CoIII(15-TMC-CH2-O)]2+ (4) by hydroxylation of an N–CH3 group of the 15-TMC ligand. In the latter reaction, we propose that the hydroperoxide group in 3 is homolytically cleaved to generate a high-valent cobalt(IV)-oxo (or cobalt(III)-oxy) intermediate as an active oxidant that effects the C–H bond activation of the 15-TMC ligand.

Results and Discussion

The starting cobalt complex, [CoII(15-TMC)(CH3CN)]2+ ([I-CH3CN]), was synthesized by the reaction of equimolar amounts of Co(ClO4)2·6H2O and 15-TMC in CH3CN (Figure 1a for X-ray crystal structure; Tables S1 and S2 and Figures S1 and S2 in the Supporting Information for structural and spectral data, respectively). Addition of aqueous HClO4 (10 equiv relative to 1) to a reaction solution containing 1 and triethylamine (TEA; 5 equiv relative to 1) in CH3CN at 0°C afforded the green intermediate 2 with absorption bands at 464 (ε = 120 m-1 cm-1) and 615 nm (ε = 90 m-1 cm-1; Figure 2a). Complex 2 was metastable at 0°C (t1/2 ≈ 2 h), which allowed us to characterize it with various spectroscopic techniques. The ESI mass spectrum of 2 exhibits a prominent signal at m/z 361.1 (Figure 2b), and the mass and isotope distribution pattern correspond to [Co(15-TMC)(O2)]+ (calcd: m/z 361.2). When the reaction was carried out with isotopically labeled H218O, a mass peak corresponding to [Co(15-TMC)(18O2)]+ appeared at m/z 365.1 (calcd: m/z 365.2; Figure 2b, inset). The observation of a four-mass-unit upshift upon substitution of 16O atoms with 18O atoms indicates that 2 contains an O2 unit. The X-band EPR spectrum of 2 is silent at 4.3 K, and the determination of the spin state of 2 by using the 1H NMR method of Evans[9] clearly indicates that 2 is a low-spin state (S = 0) cobalt(III) d6 species.[8] The oxidation of 1 (Co2+) to 2 (Co3+) was confirmed by using Co K-edge XAS data, which show a clear shift in the pre-edge and rising edge to higher energy upon going from 1 to 2 (Figure 3a; Table S3 in the Supporting Information). Figure 3b shows the Fourier transform and corresponding non-phase-shift-corrected EXAFS data for 2. The EXAFS data are consistent with a six-coordinate site in 2 with two short Co–O bond lengths of 1.89 Å and four Co–N bond lengths of 2.07 Å. Based on the spectroscopic and structural characterization, complex 2 is assigned as a cobalt(III) complex with a ‘side-on’ peroxo group, [CoIII(15-TMC)(O2)]2+.

Addition of HClO4 (10 equiv) to a solution of 2 in CH3CN at 0°C immediately generated the violet intermediates
Intermediate 3 rapidly reverted back to 2 upon addition of tetramethylammonium hydroxide (TMAMH; 3 equiv), and addition of HClO₄ to the resulting solution of 2 regenerated 3 quantitatively. This reversible cycle could be repeated several times, which suggests that 2 and 3 are interconverted through the acid–base chemistry proposed in Scheme 3:

![Scheme 3. A reversible acid–base equilibrium between the cobalt(III)-peroxo (2) and cobalt(III)-hydroperoxo (3) complexes.](image)

such an interconversion has been well demonstrated in non-heme iron(III)-peroxo and iron(III)-hydroperoxo species. Thus, the above evidence for this acid–base interconversion further supports the identification of intermediates 2 and 3 as the cobalt(III)-peroxo, [Co(III)(15-TMC)(O₂)]⁺, and cobalt(III)-hydroperoxo species, [Co(III)(15-TMC)(O₂H)]⁺, respectively.

As mentioned above, the cobalt(III)-hydroperoxo species, 3, cleanly converts to the thermally stable product 4. We thus characterized 4 with various spectroscopic methods and X-ray crystallography. The ESI mass spectrum of 4 exhibits a signal at m/z 192.5 (Figure 4), and the mass and isotope distribution pattern correspond to [Co(III)(15-TMC-CH₂-O)-(CH₃-CN)]²⁺ (caled: m/z 192.6). When the reaction was carried out with 3 prepared with isotopically labeled H₁⁸O₂, the mass peak corresponding to 4 shifted to m/z 193.5 (caled: m/z 193.6; Figure 4), which indicates that 4 contains an oxygen atom. Furthermore, when the reaction was carried out with deuterated [Co(III)(15-TMC-(CD₃))₃]⁺ ([1-CD₃]), a mass peak corresponding to [Co(III)(15-TMC-(CD₃)-CD₂-O)(CH₃-CN)]²⁺ ([4-CD₃]) appeared at m/z 198.0 (caled: m/z 198.1; Figure 4; see below). Complex 4 was EPR silent at
4.3 K, and the spin state of the cobalt ion was determined to be \(S = 0 \) by the Evans' \(^1\)H NMR method.\(^{[12]}\)

Complex 4 was further characterized by X-ray diffraction analysis (Tables S1 and S2 in the Supporting Information). As shown in the molecular structure in Figure 1b, complex 4 has a six-coordinate cobalt ion with four nitrogen atoms from the macrocyclic 15-TMC ligand in equatorial positions, one axial hydroxide ligand, and a trans-axial oxygen atom from an alkoxide group. Thus, the crystal structure clearly illustrates the hydroxylation of a ligand methyl group and the ligation of the resulting O atom of the alkoxide to the cobalt ion.

We then investigated the mechanism of the conversion of 3 to 4 (i.e., the hydroxylation of the N-methyl group by a cobalt(III)–hydroperoxo species). Three possible mechanisms were considered (Scheme 4): One is the direct C–H bond activation of the methyl group by the hydroperoxo ligand in 3, which would generate \(\text{H}_2\text{O}, \text{Co}^{\text{III}}\text{–O} \), and \(\text{N}–\text{CH}_3^+ \) (pathway A).\(^{[14]}\) Radical coupling between \(\text{Co}^{\text{III}}\text{–O} \) and \(\text{N}–\text{CH}_3^+ \) would produce the oxygenated product 4. In this direct C–H bond activation by the hydroperoxo group, a high kinetic isotope effect (KIE) value (> 1) would be expected with the deuterated N-methyl group. Since the KIE value of 1 was obtained in the conversion of 3 to 4 (\(k_{\text{obs}}/k_{\text{H}} = 3.7(3) \times 10^{-3} \text{ s}^{-1} \) for 3-(CH\(_3\)) and 3.4(4) \times 10^{-3} \text{ s}^{-1} for 3-(CD\(_3\))), we ruled out the mechanism of direct C–H bond activation by the hydroperoxo ligand in 3.\(^{[15]}\) The other possibilities are O–O bond cleavage of 3 by heterolysis or homolysis. Heterolytic cleavage of the O–O bond would generate \(\text{Co}^{\text{IV}}\text{–O} \) and OH\(^–\) (pathway B). H-atom abstraction by \(\text{Co}^{\text{IV}}\text{–O} \) and a rebound process would produce 4. Addition of a proton would facilitate the heterolytic cleavage of the O–O bond, in which one of the oxygen atoms forms an oxyl radical and the other is released as water.\(^{[16,17]}\) However, we found no proton-concentration effect on the rate of the O–O bond cleavage of 3 (Table S5 in the Supporting Information). Thus, homolytic cleavage is the most likely mechanism (pathway C), because it is consistent with KIE = 1 and a lack of proton-concentration effect in the kinetic experiments. The homolytic cleavage of the hydroperoxo O–O bond would produce \(\text{Co}^{\text{III}}\text{–O} \) and \(\text{OH} \) species, which is proposed to be a rate-determining step. The \(\text{OH} \) species abstracts an H atom from the methyl group to afford H\(_2\)O; this is followed by radical coupling between \(\text{Co}^{\text{III}}\text{–O} \) and \(\text{N}–\text{CH}_3^+ \) to yield 4. As a precedent, we have recently shown an example of O–O bond homolysis of an iron(III)–hydroperoxo complex that leads to the generation of an iron(IV)–oxo complex.\(^{[16]}\)

The reactivity of 3 toward external substrates was investigated as well. Upon addition of substrates, such as xanthene, anthracene, cyclohexadiene, and cyclohexane, to the solution of 3, we could not observe any difference in the \(k_{\text{obs}} \) value. Furthermore, product analysis of the reaction solutions revealed that no oxidized products were formed in these reactions. The results demonstrate that 3 is not capable of reacting with external substrates because the intramolecular hydroxylation occurs at a fast rate under the reaction conditions.

Conclusion

We have shown the synthesis of a cobalt(III)–peroxo (2) complex with a macrocyclic 15-TMC ligand and its conversion to a cobalt(III)–hydroperoxo (3) complex upon protonation. The latter species was further converted to give an oxygenated product, 4, in which an N-methyl C–H bond of the 15-TMC ligand bound to the Co center was hydroxylated. Kinetic studies support a homolytic O–O bond cleavage of the hydroperoxo ligand in 3 through the formation of a cobalt(III)–oxyl species, which is responsible for the hydroxylation of the N-methyl group of the 15-TMC ligand. This study is another step towards understanding formation processes through structural and spectroscopic studies and ligand oxidation reactions, which provide important fundamental information about the aliphatic hydroxylation by metal–O\(_2\)(H) and metal–O intermediates.

Experimental Section

Materials: All chemicals obtained from Aldrich Chemical Co. were the best available purity and were used without further purification unless otherwise indicated. Solvents were dried according to published procedures and distilled under Ar prior to use.\(^{[18]}\) \(\text{H}_2\text{O} \) (98% \(^1\)H\(_2\text{O}\), in water) and \(\text{H}_2\text{O} \) (95% \(^1\)H\(_2\text{O}\)enriched) were purchased from ICON Services Inc. (Summit, NJ, USA). Iodosylbenzene (PhIO) and 15-TMC (1,4,8,12-tetramethyl-1,4,8,12-tetraazaacyclotetradecane) were prepared according to the literature methods.\(^{[19,20]}\) The [D\(_{12}\)]-15-TMC ligand was prepared by mixing an excess amount of...
[D]formaldehyde (20 mmol, 2800 μL) and [D]formic acid (20 mmol, 770 μL) with 1,4,8,12-tetraazacyclotetradecane (1.5 mmol, 33 mg). The mixture was heated to reflux for 12 h. After cooling, an aqueous solution of NaOH was added to the mixture. The resulting solution was extracted with CHCl3 (3 × 20 mL). The combined extracts were dried overnight (Na2SO4, and CHCl3) was removed by evaporation under reduced pressure: ESI-MS (CH3CN): m/z 283.3 [D2]15-TMC-H+; 1H NMR (CD3CN, 400 MHz): δ = 2.46 (s, 4H), 2.39 (t, 12H), 1.60 ppm (q, 6H).

Instrumentation: UV/Vis spectra were recorded on a Hewlett Packard 8453 diode array spectrophotometer equipped with a UNISOKU scientific instrument for low-temperature experiments. Electrospray-ionization mass spectrometry was collected on a Thermo Finnigan LCQ Advantage MAX quadrupole-ion-trap instrument (San Jose, CA, USA), by infusing samples directly into the source with a manual method. The spray voltage was set at 4.2 kV and the capillary temperature at 80°C. 1H NMR spectra were measured with Bruker DPX-400 spectrometer. The effective magnetic moments were determined by using the modified 1H NMR method of Evans at ~20°C 2A. A WILMAD coaxial insert (sealed capillary tube containing the blank [D]Jactonitrile solvent (with 1.0% tetramethylsilane) within the NMR tubes containing the complexes (8.0 mM) dissolved in [D2]acetonitrile (with 0.05% TMS). The chemical shift of the TMS peak (and/or solvent peak) in the presence of the paramagnetic metal complexes was compared to that of the TMS peak (and/or solvent peak) in the inner coaxial insert tube. The effective magnetic moment (μ) was calculated by using the equation μ = 0.0086(V/ΔT/2M)c in which V is the oscillator frequency (MHz) of the superconducting spectrometer, T is the absolute temperature, M is the molar concentration of the metal ion, and Δν is the difference in frequency (Hz) between the two reference signals 2A. CW-EPR spectra were measured at 9.5 GHz with a Bruker EMX plus spectrometer equipped with a dual-mode cavity (ER1416DM). Low temperatures were achieved and controlled by using an Oxford Instruments ESR900 liquid helium cryostat with an Oxford Instruments ITC503 temperature and gas-flow controller.

Generation and characterization of [Co(15-TMC(CH3CN)3)](ClO4)2·6H2O (0.71 g, 2.6 mmol). The reaction mixture was heated to reflux for 12 h. After the reaction mixture had cooled, the solvent was removed under vacuum to get a red solid, which was collected by filtration and then washed with methanol several times to remove remaining [CoCl2(15-TMC)]·6H2O: Yield = 1.11 g (70%). ESI-MS (CH3CN; Figure S1 in the Supporting Information): m/z 164.8 [Co(15-TMC)]+. 184.9 [Co(15-TMC(CH3CN))]+; 205.0 [Co(15-TMC)3(CH3CN)2]+; 428.1 [Co(15-TMC)(ClO4)]2+; m/z = 4.3 m/z; elemental analysis: calcd for C19H40N6O8Cl2Co: C 37.39, H 6.61, N 13.77; found: C 37.12, H 6.48, N 13.75; 1H NMR (CD3CN): δ = 2.46 (s, 4H), 2.39 (t, 12H), 1.60 ppm (q, 6H).

After the completion of the reactions, pseudo-first-order fitting of the kinetic data allowed the k1 values to be determined.

X-ray crystallography: Single crystals of [Co(15-TMC(CH3CN)3)](ClO4)2 and [Co(15-TMC·HO(OH))(ClO4)2(CH3CN)] were picked from solutions by a nylon loop (Hamilton Research Co.) on a handmade copper plate mounted inside a liquid N2 Dewar vacuum at approximately –40°C and mounted on a goniometer head in an N2 cryostat. Data collections were carried out on a Bruker SMART APEX II CCD diffractometer equipped with a monochromator in the MoKα (λ = 0.71073 Å) incident beam. The CCD data were integrated and scaled by using the Bruker SAINT software package, and the structure was solved and refined by using SHELXTL Version 6.2 software 23. Hydrogen atoms were located in calculated positions and refined in the usual manner.

Crystallographic data for [Co(15-TMC(CH3CN)3)](ClO4)2·6H2O and [Co(15-TMC·HO(OH))(ClO4)2(CH3CN)]-S2O82−·Et2O·2MeCN were deposited in the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request cif).

X-ray absorption spectroscopy: The Co K-edge X-ray absorption spectra of 1-3 were measured at the Stanford Synchrotron Radiation Laboratory (SSRL) on the unfocussed 20-μm 2T wigglers side-station beam line 3-undulator ring at 3 GeV and apparatus using a Si(220) double crystal monochromator was used for energy selection. A Rh-coated harmonic rejection mirror was used on beam line 7-3 to reject components of higher harmonics. The solid sample for 1 was finely ground with BN into a homogeneous mixture and pressed into a 1 mm aluminum spacer between X-ray transparent 37 μm Kapton tape. The solution samples for 2 and 3 (120 μL) were transferred into 2 mm delrin windows containing 37 μm Kapton windows under synchrotron (450 μm) solutions. Both solid and solution samples were immediately frozen after preparation and stored under liquid N2. During data collection, the samples were maintained at a constant temperature of 15 K by using an Oxford Instruments CF1208 liquid helium cryostat. Data were measured to k = 15 Å−1 on 1 (transmission mode) by using an ionization chamber detector and to k = 15 Å−1 on 2 and 3 (fluoresence mode) by using a Canberra Ge 30-elm- array detector. Internal energy calibration was accomplished by simultaneous measurement of the absorption of a Co foil placed between two ionization chambers situated after the sample. The first inflection point of the foil spectrum was fixed at 7709.5 eV. Data presented here are 2 scans (1), 15 scan (2), and 15 scan (3) average spectra, which were processed by fitting a second-order polynomial to the pre-edge region and subtracting this from the entire spectrum as background. A four-component spline of orders 2, 3, 3, and 5 was used to model the smoothly decaying post-edge region. The data were normalized by subtracting the cubic spline and assigning the edge jump to 1.0 at 7725 eV by using the Pyrspline program 24. Theoretical EXAFS signals χ(k) were calculated by using the FEFF program (Macintosh Version 8.4). The crystal structural
nature of I, and structural models of 2 and 3 built in Avogadro.25 The theoretical models were fitted to the data by using the EXAFSPAK program.26 The structural parameters varied during the fitting process were the bond distance (R), the bond variance (σ), which is related to the Debye–Waller factor resulting from thermal motion, and the static disorder of the absorbing and scattering atoms. The nonstructural parameter E0 (the energy at which k = 0) was also allowed to vary but was restricted to a common value for every component in a given fit. Coordination numbers were systematically varied in the course of the fit but were fixed within a given fit. A comparison of the k-weighted Co K-edge EXAFS data for 2 and 3, along with their phase-shift-corrected Fourier transforms (k = 2–14 Å−1) is shown in Figure 3. The FEFF program fits to the data are presented in Figure 3 and Table S3 in the Supporting Information. On going from 2 to 3, the first-shell Fourier transform peak intensity decreases, which indicates a decrease in the coordination number in 3. The second-shell and third-shell features were fitted with single- and multiple-scattering components from the macrocyclic ligand (Table S4 in the Supporting Information).

Acknowledgements

W.N. at Ehwa Womans University acknowledges financial support from the NRF/MEST of Korea through the CRI (2-2012-1794-001-1) and GRL (2010-00353) and from the 2011 KRICT OASIS Project. J.C. at DGIST acknowledges the R&D program of the MEST of Korea (13-BD-0403) and from the 2011 KRICT OASIS Project. J.C. at DGIST acknowledges the NRF/MEST of Korea through the CRI (2-2012-1794-001-1) and GRL (2010-00353) and from the 2011 KRICT OASIS Project. J.C. at DGIST.

Received: January 12, 2013
Revised: July 8, 2013
Published online: September 3, 2013