ChemComm

COMMUNICATION

Catalytic oxidation of alkanes by iron bispidine complexes and dioxygen: oxygen activation versus autoxidation†

Peter Comba,⁎ Yong-Min Lee, Wonwoo Nam and Arkadius Waleska

Organic substrates (specifically cis-1,2-dimethylcyclohexane, DMCH) are oxidized by O2 in the presence of iron(II)–bispidine complexes. It is shown that this oxidation reaction is not based on O2 activation by the nonheme iron catalysts as in Nature but due to a radical-based initiation, followed by a radical- and ferryl-based catalytic reaction.

Nonheme iron oxidation and oxygenation enzymes, e.g. methane monoxygenase, naphthalene dioxygenase, bleomycin, taurine dioxygenase and cysteine dioxygenase, activate O2, leading to a putative superoxido FeIII intermediate which, in subsequent steps, is reduced (and protonated) to yield (hydro)peroxido FeIII species, which are generally converted to the high-valent iron-oxo active initiation, followed by a radical- and ferryl-based catalytic reaction.

However, the key superoxido FeIII intermediate has so far not been trapped and characterized, and for nonheme iron model systems, evidence for superoxido FeIII complexes is extremely scarce, i.e. the reactive intermediate so far remains elusive. 6–9 It is expected that the ligand sphere has a significant effect on the FeIII/II potential and hence on the O2 activation by the ferrous center, with a predicted barrier for the activation of O2 by nonheme iron centers of less than 0.10 V limit [i.e. +0.84 V for complex 1 (Fig. S1, ESI†) and +0.76 V for 2,11 see Scheme 1 for complex structures] catalyze the oxidation of cis-1,2-dimethylcyclohexane (DMCH) with O2. Importantly, DMCH has a significantly higher C–H bond dissociation energy (BDE, ca. 96.5 kcal mol−1)12 than the substrates used in similar experiments (e.g., cyclohexene, ca. 88.8 kcal mol−1)6,12,13 and, under ambient conditions in MeCN, conversion of cyclohexane (BDE, ca. 105 kcal mol−1)12 to cyclohexanol was also observed.14 With iron bispidine complexes under ambient conditions in acetonitrile (MeCN) and with DMCH as the substrate, formation of a stable purple intermediate (characterized as the corresponding alkylperoxido-FeIII species, vide infra) and oxidation products was observed (alcohols as well as ketones with similar yields and in similar ratios as with H2O2 as the oxidant, see ESI,† Fig. S2). Here, we present an alternative reaction mechanism for the oxidation of organic substrates in the presence of iron–bispidine complexes and dioxygen.

The assumed mechanism of alkane oxygenation by a superoxido FeIII complex involves H atom abstraction by the superoxido complex, producing a hydroperoxido FeIII intermediate which then forms an FeIV=O complex.6 This is known to be a strong enough oxidant for the substrates studied here. Moreover, preliminary DFT calculations indicated that the putative superoxido FeIII complex 2 is able to abstract H atoms from cyclohexadiene,15–17 and electronic spectra of the supposedly emerging ferryl complexes 1′ and 2′ are well-known18,19 and are observed upon reaction of DMCH with the FeIV complexes 1 and 2 in MeCN under ambient conditions (see ESI,† Fig. S3). The fact that FeIV hydroperoxido intermediates could also be trapped and characterized by EPR20 indicated that the assumed superoxido-FeIII-based mechanism might operate – although the FeIII/II potentials of our “catalysts” are much too high.10 We therefore studied the kinetics of the formation and decay of the ferryl intermediate in detail.† Interestingly, with all substrates used, the kinetic traces were sigmoidal with a substantial lag phase,

† Electronic supplementary information (ESI) available: The synthesis of complexes 1 and 2 was reported previously.13–15 Full description of the experiments describing all relevant experimental and simulated spectra. See DOI: 10.1039/c3cc47013j

a Universität Heidelberg, Anorganisch-Chemisches Institut, D-69120 Heidelberg, Germany. E-mail: peter.comba@aci.uni-heidelberg.de
b Department of Bioinspired Science, Department of Chemistry and Nano Science, Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea

† Electronic supplementary information (ESI) available: The synthesis of complexes 1 and 2 was reported previously.13–15 Full description of the experiments describing all relevant experimental and simulated spectra. See DOI: 10.1039/c3cc47013j

Scheme 1 Bispidine complexes 1 and 2: X = solvent molecule.
which was irreproducible in length. After thorough purification of the substrates by filtration over magnesium sulfate, alumina and silica, the duration of the lag phase increased (but not fully reproducible); with an older batch of DMCH (DMCHaged) the start of the formation of ferryl species was very fast (see ESI,† Fig. S3). This indicates that DMCH might be oxidized prior to the exposure to the iron bispidine compounds (from diethylether it is well known that in an oxygen atmosphere formation of peroxy compounds via hydrogen abstraction by dioxygen21). Solutions of FeII complexes with DMCHaged and O\textsubscript{2} at −80 °C in dichloromethane (DCM) are bluish with electronic transitions at 604 nm and EPR signals of at least three different species ($g_a = 4.29; g_b = 2.19, 2.15$ and $1.96; g_c = 2.04, 2.01$ and 2.00; see Fig. 1 for 2 and ESI,† Fig. S8 for 1). The EPR spectrum with $g_b = 2.19, 2.15$ and 1.96 resembles that of the previously published $S = 1/2$ hydroperoxido and alkylperoxido FeIII bispidine compounds.20,22 It indicates that the observed iron–bispidine-assisted oxidation might be initiated by organic radicals.

To test this assumption we investigated the reactions of DMCH, methylocyclohexane (MCH) and 1,4-dimethylocyclohexane (1,4-DMCH) with added radical scavengers [2,6-bis(tert-butyl)-4-methylphenol as an antioxidant (A), bromotrichloromethane as a carbon radical scavenger (C) and diphenylamine as an oxygen radical scavenger (O)] as well as with the radical starter azobis-isobutyronitrile (AIBN); otherwise identical experimental conditions, see Table 1. The BDEs of the three substrates used are very similar but they have different hydrogen abstraction reactivities, as observed before for cis- and trans-1,2-dimethylocyclohexane.21

For the reactions provided in Table 1, 1 was preferred over 2 because of the simple and fast visual detection of an activation and its beneficial reaction characteristics, i.e. 1° is a faster and stronger oxidant than 2° and is therefore expected to increase the probability of a positive reaction.11,18,19,24 From Table 1 it can be observed that carbon-based radicals initiate the oxidation sequence. Therefore, for 2 we studied the iron species that form during the sigmoidal activation and the exponential decay phase in the presence of AIBN and DMCH (Fig. 2; note that for 1 the corresponding EPR spectra did not reveal any low-spin ferric complexes). As the reaction proceeds, the FeIV—O intermediate is generated (UV-vis-NIR, 735 nm) along with three different species with EPR signals for FeIII $S = 5/2$, $S = 1/2$ and a species of almost axial symmetry at $g = 2.03$, 2.01 and 2.00 (see Fig. 2). In the reaction of 1 with tert-butyldihydroperoxide, we first observed the formation of an oxygen-based radical; after the decomposition, according to mass spectrometry a tert-butyldalkoxido FeIII compound emerged (see ESI,† Table S1).

Based on these observations, we propose a reaction mechanism initiated by organic radicals and involving ferrous bispidine complexes, O\textsubscript{2} and organic substrates (Scheme 2): (A) The EPR and UV-vis-NIR spectra of 2 with DMCHaged in DCM at −80 °C (Fig. 1) are due to the alkylperoxido FeIII intermediate with an

Table 1 Comparison of the reactivities of 1.0 mM of 1 and various substrates (16 h reaction time under ambient conditions in MeCN; 180 equiv. of AIBN was used as a radical starter; (A), (O) and (C) [see text] were used as radical scavengers, 9.0, 4.5 and 4.5 equiv., respectively; see ESI, Fig. S9 for UV-vis-NIR spectra of entries a–d, f, and h).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Radical starter</th>
<th>Radical scavenger</th>
<th>FeIII-OOR observeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>DMCH (200 eq.)</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
<tr>
<td>b</td>
<td>DMCH (200 eq.)</td>
<td>—</td>
<td>A</td>
<td>\checkmark</td>
</tr>
<tr>
<td>c</td>
<td>DMCH (200 eq.)</td>
<td>—</td>
<td>C</td>
<td>\checkmark</td>
</tr>
<tr>
<td>d</td>
<td>DMCH (200 eq.)</td>
<td>—</td>
<td>O</td>
<td>\checkmark</td>
</tr>
<tr>
<td>e</td>
<td>MCH (200 eq.)</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
<tr>
<td>f</td>
<td>MCH (200 eq.)</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
<tr>
<td>g</td>
<td>1,4-DMCH (400 eq.)</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
<tr>
<td>h</td>
<td>1,4-DMCH (400 eq.)</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
<tr>
<td>i</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

a Reactions are considered positive when a purple alkylperoxido FeIII species was observed; note that so far only complexes with tetradentate bispidines have been shown to form stable alkylperoxido FeIII species.32$

b A strong increase of intensity in the UV region but no well-resolved electronic transition at around 520 nm, see ESI, Fig. S9c.
conversion was observed under these conditions (see also ESI, † position of the alkylperoxido FeIII species (see Fig. 2) with AIBN peracids, peroxides and iodosylbenzene, and alkanes as well and this includes reactions with various oxidants such as to be very cautious when studying Fe-catalyzed oxidation tion at approx. 1064 nm and g = 2.19, 2.15 and 1.96. The assignment of these spectra to a metastable hydroperoxido FeIII derivative is ruled out because addition of a base to these solutions did not lead to the corresponding peroxido complex (whose spectroscopic signature is known24), and addition of acid did not20,22 yield the expected FeV complex,22 i.e. no conversion was observed under these conditions (see also ESI,† Fig. S10 and S11). (B) The continuous formation and decomposition of the alkylperoxido FeIII species (see Fig. 2) with ABN at 25 °C yields the ferryl complex with a UV-vis-NIR feature at 735 nm, responsible for the oxygenation of the organic sub- strate, and an oxygen-based radical with g = 2.03, 2.01 and 2.00. This interpretation is supported by EPR spectra observed after the reaction of 1 with tert-butylhydroperoxide.22 The alkoxyl radical may react in different ways: (i) oxidative reaction with FeII to yield a ferric alkoxido complex with radical may react in different ways: (i) oxidative reaction with

In conclusion, we present evidence that the iron–bispidine-assisted oxygenation of alkanes is initiated by organic radicals – a similar autoxidation pathway has recently been proposed.10 We cannot exclude that formation of these radicals may involve FeII and O2 but with our ligand systems initiation by superoxido FeIII intermediates is very unlikely.10 We believe that the pathway presented here is quite general, and one needs to be very cautious when studying Fe-catalyzed oxidation reactions of organic substrates in an ambient atmosphere – and this includes reactions with various oxidants such as peracids, peroxides and iodosylbenzene, and alkanes as well as olefins.7-12

Generous financial support by the University of Heidelberg and the German Science Foundation is gratefully acknowledged. We are thankful to Michael Westphal (Heidelberg) and Graeme Hanson (UQ Brisbane) for help with the EPR spectroscopy. The work at EWU was supported by NRF/MEST of Korea through CRI (2-2012-1794-001-1 to W.N.).

Notes and references

‡ Product formation was monitored using the highly active 9,10-dihydro-anthracene (BDE: 75 kcal mol−1) as the substrate, see ESI.

15 P. Comba, S. Pandian and A. Waleska, work in progress.